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Abstract. We assume that high-energy nucleus-nucleus interactions give rise to a hot and dense plasma
comprising quarks and gluons due to successive nucleon-nucleon collisions. We treat this plasma as an
ideal fluid at temperature T prior to its eventual particlization, and attempt a microscopic description of
meson-formation by using finite temperature propagators for q and q̄ in a Bethe-Salpeter equation with a
Coulomb plus a linear kernel. The equation thus obtained is reduced to a Schrodinger-like equation which
then yields, for 0 < T < 86 MeV, the bound state masses for different states of bb̄ and cc̄, which are in
agreement with the experimental values for these states. The effects of the temperature of the plasma on
the meson masses show up only when the temperature exceeds 86 MeV, pointing to the probable reason
for the successes of the earlier models which did not explicitly take the temperature of the plasma into
account.

PACS. 12.40.-y Other models for strong interactions

1 Introduction

In the current ‘standard’ model, hadrons are considered to
be composites of more elementary entities (quarks). The
theoretical base of the model is provided by the belief in
an underlying gauge theory of hadrons on the one hand,
and certain phenomenological features of quarks (for ex-
ample, their non-observability in the free state) on the
other. Within this framework, an enormous amount of the-
oretical activity has taken place in the last twenty years,
particularly after the experimental discoveries of the Char-
monium, the Upsilonium, etc. families. These attempts to
explain the observed features of hadron spectra have dif-
fered in the choice of description (nonrelativistic or rel-
ativistic), in the choice of the inter-quark potential, and
in whether the spin of the quarks is or is not taken into
account. Excellent descriptions of these attempts can be
found, for example, in the review articles by Mukherjee et
al. [1] and by Mitra [2].

The initial thrust of activity in this field was concerned
with the reproduction of the observed masses of the me-
son families through the quantum mechanics of the bound
states of appropriate quarks interacting via suitably cho-
sen potentials. As is well known [1, 2], the choice of the

inter-quark potential is dictated by the twin requirements
of asymptotic freedom and infra-red slavery, which are met
by potentials of the form

V (r) ∼ αs/r − λrε − C, (1)

where r = |r| is the inter-quark distance, αs and λ are
the coupling constants corresponding to the ‘Coulomb’
and the ‘confining’ parts of the potential respectively, ε
is a positive rational number and C is a constant. While
choices for ε have varied from 0.1 to 2.0, the most popular
have been 1.0 and 2.0 (the ‘linear’ and the ‘harmonic os-
cillator’ potentials). A wide variety of these models have
been successful to varying degrees of precision in account-
ing for the experimental meson masses. A feature of the
potentials given by (1) is that, whereas the Coulomb part
corresponds to a one-gluon exchange potential, the confin-
ing part does not follow directly from field theory. While
the problem of a satisfactory explanation of the origin of
this part of the potential remains, the thrust of activ-
ity in the field has shifted to the nature of matter which
“particlizes” into the observed mesons. Specifically, it has
been speculated that in high-energy nucleus-nucleus in-
teractions, nuclear matter might be compressed or heated
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as a result of successive nucleon-nucleon collisions to give
rise to a hot and dense plasma comprising quarks and glu-
ons. Thus, the question: Does quark-gluon plasma exist?
It is clear that the shift in the focus of inquiry mandates
a thermodynamic and statistical approach [3]. One of the
basic issues sought to be settled is: What is the signature
of such a state of matter, if it exists?

It seems to us that the explanation of the observed me-
son masses assuming the existence of quarks interacting
via a potential has hitherto been considered as an alter-
native to the explanation based on statistical and ther-
modynamic considerations. Most likely it was Fermi [4]
and Landau [5] who initiated this latter approach which,
as discussed by Grammer et al. [6], suggests that a pro-
cess such as e+-e− annihilation leads to the creation of
hadronic matter which may be treated as an ideal fluid
at temperature T prior to its eventual “particlization”.
While Grammer et al. have come up with some inter-
esting conjectures regarding the gross features of meson
phenomenology, they have also remarked that the statis-
tical and thermodynamic description is not likely to teach
us very much about the fundamental properties of the
hadronic constituents at a deeper than macroscopic level.
Similar thinking seems to prevail in the recent concern
about the existence of quark-gluon plasma [3]. This need
not be so. Specifically, we note that the observed meson
masses have not been obtained on the basis of a dynam-
ical description of the quark-gluon plasma. In particular,
the temperature of the plasma plays no explicit role in
the detailed theoretical framework in which fits have been
obtained to the observed meson masses. One could argue
that the value of the coupling constants used in (1) are
such that they implicitly incorporate the effects of temper-
ature. However, this is a conjecture. It is therefore inter-
esting to investigate the effect of the explicit incorporation
of temperature in the description of the “particlization”
of the quark-gluon plasma. This is the problem to which
we address ourselves here.

The need for such an investigation also stems from the
observation that, despite an increasing appreciation in re-
cent years of the crucial role played by temperature in
the “birth” of various species of particles [7], a detailed
account of the underlying mechanism has been lacking.
We note that while Hagedorn [8], in a series of papers in
the sixties, did consider the role played by temperature
in determining the hadronic mass spectra, his philosophy
(“nuclear democracy”) is quite different from the one fol-
lowed by us (“hadrons as composites of quarks”). Since
temperature is a statistical concept, it is obvious that our
investigation is tantamount to attempting a microscopic
description of particlization in a macroscopic background.
We are enabled to do so through the use of temperature-
dependent Green’s functions (not known at the time [4]
and [5] were written) for the constituents of the hadrons. It
should be recalled that such a function describes the mo-
tion of one particle in a many-particle system; in addition,
it carries all statistical mechanical information because it
is an expectation value in the grand canonical ensemble
[9].

2 Dynamics of particlization

As discussed by Grammer et al. [6], one may assume that
a process such as e+-e− annihilation, at sufficiently high
energy, leads to the creation of quark-gluon plasma in a
volume the dimension of which is much smaller than the
characteristic length of strong interaction forces. Follow-
ing Fermi [4] and Landau [5], we treat this matter as an
ideal fluid in thermal equilibrium at temperature T . What
leads to the formation of the mesons are the high-energy
collisions between the quarks of appropriate flavours. For
the motion of a q or a q̄ within the plasma, we invoke the
concept of a finite-temperature propagator. Assuming now
a suitable potential between a q and a q̄, and making use of
the special interaction representation in terms of temper-
ature, as in e.g. Kirzhnits [9] or Fetter and Walecka [10],
one can derive a temperature-generalized Bethe-Salpeter
(BS) equation for the pairing amplitude for qq̄ in the man-
ner of Gell-Mann and Low [11]. Such an exercise has been
carried out for the Coulomb problem by Pande [12], and it
has been established that the resulting equation is identi-
cal to the equation obtained earlier by Malik et al. [13] by
using the Matsubara prescription in the T = 0 equation
[14]. Naturally, therefore, we follow the latter course here.

The T = 0 momentum-space BS equation for the
bound state of qq̄ is [16]

χp(q) = −
∫
d4kS

′(1)
F (p1)S′(2)

F (p2)G(P, q, k)χp(k), (2)

where p1 and p2 are the final 4-momenta, p′1 and p′2 are
the initial 4-momenta, and k and q are the initial and
final relative 4-momenta respectively. Confining ourselves
to the equal-mass case, these variables are given by

k = (p′1−p′2)/2, q = (p1−p2)/2, P = p1+p2 = p′1+p′2.

Taking recourse to the ladder approximation, we re-
place the exact fermion propagators S′(1)

F and S
′(2)
F in (2)

by free fermion propagators and the interaction function
G by its lowest order value:

G(P, q, k) ' G0(q, k) = [1/(2π)4]F12γ
(1)
µ γ(2)

µ 〈q|V12|k〉, (3)

where the color factor F12 has the value −4/3 for the qq̄
system. We now go over to the center of mass frame of a
qq̄ pair so that P = (0, iM). Substituting (3) into (2) and
carrying out the spin reduction of the resulting equation
by the method of Gordon [16], we obtain

D(q0, q)χp(q) = −[F12/(2π)4]
∫
d4kI(q, k)χp(k), (4)

where

D(q0, q) = [(q0 +M/2)2 − w2][(q0 −M/2)2 − w2], (5)

w = (m2 + q2)1/2,

I(q, k) = [P 2 − (q + k)2 + σ(1)
µν σ

(2)
µλ (q − k)ν(q − k)λ

− i{σ(1)
µν − σ(2)

µν }Pµ(q − k)ν

− 2i{σ(1)
µν + σ(2)

µν }qµkν}〈q|V12|k〉. (6)
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We note that the spin-reduction of the equation (Gordon
reduction) is achieved by assuming the constituents of the
bound states to be “on-shell”. This is evidently open to
objection in view of the bound state nature of the prob-
lem. However, the elegant and compact manner in which
the spin-spin, spin-orbit, tensor and “contact” terms now
appear (see (16)) is a rather pleasant feature of this ap-
proach, which is to be constrasted with the highly un-
wieldly decomposition that the more familiar method of
separation into large and small components would lead
to. While we refer to [17] for a more detailed discussion
of the Gordon decomposition, we note that an important
consideration for us was also to study the temperature-
generalized version of the model within the same approx-
imation scheme as was used in the original T = 0 model
[18].

Equation (4) is reduced to a 3-dimensional equation
by making the instantaneous approximation (IA), which
consists of two steps. First, one sets k0 = q0. This causes
I(q, k) to become of the form c0 + c1q0 + c2q

2
0 , where c0,

etc. are functions of q and k. Again, in order to study
the temperature-generalized model within the same set of
approximations as adopted in [18], we also neglect the q0
and q2

0 terms. Then the r.h.s. of (4) is a function of q alone.
Consistency now demands that we equate the l.h.s. of the
equation also to a function of q. Thus, the second step in
the IA consists of setting

D(q0, q)χp(q) = ψ(q), (7)

whence (4) becomes

ψ(q) = −[F12/(2π)4]
∫
d3k I(q,k)ψ(k)J(k), (8)

where

I(q,k) = [−M2 − (q + k)2 − 2i{σ(1)
ij + σ

(2)
ij }qikj

+σ
(1)
ij σ

(2)
il (q − k)j(q − k)l

−M2(q2 − k2)/(2m2)]〈q|V12|k〉, (9)

and

J(k) =
∫
dk0/D(k0,k)

≡ (1/d)
[ ∫

(k0 +M)dk0/{(k0 +M/2)2 − w2 + iε}

−
∫

(k0 −M)dk0/{(k0 −M/2)2 − w2 + iε}
]
(10)

= (M/d)
∫
dq0/{q2

0 − w2 + iε} (11)

with
d = 2M [M2/4− w2].

We note that (11) is obtained after appropriately redefin-
ing the variables of integration in (10) and noting that in
both integrands, terms which are odd in the variable of
integration yield vanishing contributions as the range of

integration is symmetric. The location of poles of the inte-
grand in (11) allows one to carry out the familiar Wick ro-
tation, which simply changes the path of integration from
−∞ to +∞ to −i∞ to +i∞. One then sets q0 = iq4 to
obtain a Euclidean integral of the form of a Mellin trans-
form. Thus

J(k) = −iπ/[2(m2 + k)1/2{M2/4− (m2 + k2)}]. (12)

The temperature-generalization of (2) is brought about
by applying the Matsubara prescription [14] to (11); see
also [15].

k0 = (2n+ 1)/π(−iβ)
(β = 1/kBT, kB is the Boltzmann constant)

with the replacement∫ ∞
−∞

dk0 → (2π/− iβ)
∞∑

n=−∞
.

This yields

Jβ(k) = − iπ tanh[(β/2)(m2 + k2)1/2]
2(m2 + k2)1/2[M2/4− (m2 + k2)]

(13)

which, in the limit T → 0, reduces to the standard zero
temperature result given in (12).

It is remarkable that for the bound state of bb̄, the
value of the tanh function in (13) differs little from 1 for
0 ≤ T ≤ 100 MeV. In this temperature regime, therefore,
the presence of k2 in the argument of the tanh function
makes practically no difference to its value, and it is an
excellent approximation to set

tanh[(β/2)(m2 + k2)1/2] ' tanh[βm/2]. (14)

We now need to choose 〈q|V12|k〉 for the inter-quark po-
tential. The following choice is based on the work of
Eichten et al. [19]:

〈q|V12|k〉 = 4παs/(q − k)2 + 8πλ/(q − k)4

− (2π)3Cδ3(q − k)/(m2), (15)

where, as discussed in [18], the constant term has been
added to simulate a term that arises in the Gordon reduc-
tion of the original equation. Substituting (13), (14) and
(15) into (8) and transforming the resulting equation to
coordinate space, we obtain

[−4m− (16λ′/3)r + 16α′s/(3r)− 16C ′/(3m2)]∇2χ(r)

= (8/3)[(2 +M2/2m2)(α′s/r
2 + λ′)]

(r ·∇)
r

χ(r)

+ (4α′s/3)[M2/r + 4πδ3(r)(1− σ1 · σ2 +M2/2m2)
− (1/r3){S12 + 4L · S}]χ(r)

+ (4λ′/3)[−M2r + {2(1 +M2/2m2)− S12/3− 4L · S
− (4/3)(σ1 · σ2)}/r]χ(r)

+ [m(M2 − 4m2)− 4C ′M2/(3m2)]χ(r), (16)

where α′s = αst, λ′ = λt, C ′ = Ct and t = tanh(mβ/2).
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Table 1. a. Theoretical Mass of the n2S+1 Lj states of bb̄ as a function of temperature, with mb = 4.955 GeV, αS = 0.6,
λ = 0.089 GeV2, C = −0.112 GeV3

State M exp. T = 1e12 3.165e12 1e13 3.165e13 1e14 3.165e14 1e15 3.165e15 1e16 3.165e16

n2S+1Lj M (theoretical)

13S1 9.460 9.465 9.465 9.469 9.659 9.919 9.951 9.936 9.924 9.917 9.914
23S1 10.023 10.022 10.022 10.023 10.074 10.078 10.011 9.961 9.935 9.922 9.916
33S1 10.355 10.341 10.341 10.341 10.315 10.187 10.056 9.981 9.944 9.926 9.918
43S1 10.580 10.597 10.597 10.596 10.510 10.278 10.096 9.999 9.952 9.930 9.919
53S1 10.865 10.825 10.825 10.822 10.685 10.361 10.132 10.015 9.959 9.933 9.921
63S1 11.020 11.037 11.037 11.033 10.848 10.438 10.165 10.030 9.966 9.936 9.922
11S0 9.370 9.389 9.389 9.393 9.588 9.908 9.951 9.936 9.924 9.917 9.914
21S0 9.963 9.990 9.990 9.991 10.046 10.072 10.010 9.961 9.935 9.922 9.916
31S0 10.298 10.318 10.318 10.318 10.294 10.182 10.056 9.981 9.944 9.926 9.918
41S0 10.573 10.578 10.578 10.576 10.493 10.274 10.095 9.999 9.952 9.930 9.919
13P0 9.859 9.004 9.004 9.100 9.535 10.039 9.992 9.952 9.931 9.920 9.915
23P0 10.232 9.972 9.972 9.975 10.054 10.151 10.039 9.973 9.940 9.924 9.917
13P1 9.891 9.852 9.852 9.855 9.988 10.043 9.992 9.952 9.931 9.920 9.915
23P2 10.255 10.194 10.194 10.196 10.236 10.154 10.040 9.973 9.940 9.924 9.917
13P2 9.913 9.920 9.920 9.923 10.012 10.045 9.992 9.952 9.931 9.920 9.915
23P2 10.268 10.248 10.248 10.248 10.256 10.156 10.040 9.973 9.940 9.924 9.917

Note that the total load of temperature dependence is car-
ried by the factor tanh(mβ/2) multiplying αs, λ and C.
It is easy to see that this feature is independent of the po-
tential used for confinement. We conclude this section by
drawing attention to an important fact: The T = 0 equa-
tion corresponding to (16) is usually made tractable by
the selective use of the approximation M = 2m; see, e.g.,
[17, 18]. In a recent work [25], we have also obtained and
studied the equivalent of (16) by making the said approx-
imation. Interestingly enough, while the two approaches
lead to generally adequate fits to the observed masses,
they imply quite different scenarios for the physics of the
problem. This is discussed further in the last section.

3 Results and discussion

We have, using the fourth order variable-step Runge-
Kutta-Merson method, numerically explored solutions of
(16) over an extensive domain of parameter space after
incorporating the boundary conditions that ensure the
proper behavior of the solution at the origin. The bound-
state energy is obtained to within an accuracy ∆E by
requiring that for two values of the energy Ea and Eb

differing by ∆E, the corresponding solutions u(r) in the
limit of large r tend to +∞ and −∞ respectively. The
value of n characterising the bound-state is determined
by the number of nodes in the solution. The same set of
parameters

αs = 0.6, λ = 0.089 (GeV)2, C = −0.112 (GeV)3,

give a reasonably good fit to both the bb̄ and the cc̄ states,
for any temperature in the range 0 ≤ T ≤ Tu (Tu is about
86 MeV for bb̄, and slightly lower for cc̄); thus, the bound-
state energies are not dependent on temperature in this

range. The masses of the b and c quarks have been taken
to be 4.955 GeV and 1.52 GeV respectively.

For T < Tu, therefore, temperature plays the role of
a dormant variable. For T > Tu, temperature becomes
active and the meson masses depend on its value, just
as they depend on the values of αs, λ and C. We list, in
Tables 1(a) and 1(b), the masses of 26 bb̄ and cc̄ states (22
of these have been experimentally determined [20] while
the rest are theoretical predicted in the Eichten and Quigg
model [21]) together with the corresponding theoretical
masses calculated by us to an accuracy of ±0.001 GeV.
Our calculated values for the 3S1 states of the bb̄ and cc̄
systems are also plotted as functions of temperature in
Figs. 1 and 2 respectively to display their dependence on
temperature. The Tables cover both regions – the one in
which temperature is a dormant variable and the other in
which it is an active variable. One would naturally expect
that in the former region, our model should give essentially
the same results as the T = 0 model of which it is a
temperature-generalized extension. This is indeed so not
only for each of the 14 states that the T = 0 model of
Arafah et al. dealt with, but also for the 4 states predicted
in [21]. We note that the fits to a few of the cc̄ states do
not have the same accuracy as for the bb̄ states – this
feature is a carry over of the original T = 0 model that
we have temperature-generalized. This seems to indicate
that the potential that binds the cc̄ states is somewhat
different from the one that binds the bb̄ states, as has
been suggested in [22].

In the region in which the mass of a bound state varies
with temperature, the notion of mass as a fundamental
attribute of a particle becomes untenable. What seems
interesting is that our model gives an estimate of the tem-
perature (Tu) at which a particle loses this fundamental
attribute.
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Table 1. b. Theoretical Mass of the n2S+1 Lj states of cc̄ as a function of temperature, with mc = 1.52 GeV, αS = 0.6, λ = 0.089
GeV2, C = −0.112 GeV3

State M exp. T = 1e12 3.165e12 1e13 3.165e13 1e14 3.165e14 1e15 3.165e15 1e16 3.165e16

n2S+1Lj M (theoretical)

13S1 3.097 3.106 3.107 3.135 3.160 3.119 3.081 3.060 3.050 3.045 3.043
23S1 3.686 3.627 3.625 3.547 3.359 3.202 3.117 3.077 3.057 3.048 3.044
33S1 4.040 4.117 4.112 3.920 3.529 3.272 3.147 3.090 3.063 3.051 3.045
43S1 4.415 4.615 4.607 4.289 3.689 3.335 3.147 3.102 3.069 3.054 3.047
11S0 2.979 3.031 3.032 3.067 3.142 3.116 3.081 3.060 3.050 3.045 3.043
13P0 3.415 2.796 2.801 2.950 3.276 3.169 3.103 3.070 3.054 3.047 3.043
13P1 3.510 3.305 3.307 3.357 3.289 3.170 3.103 3.070 3.054 3.047 3.043
13P2 3.556 3.424 3.424 3.418 3.297 3.172 3.103 3.070 3.054 3.047 3.046
13D1 3.770 3.432 3.438 3.586 3.394 3.213 3.121 3.078 3.058 3.049 3.045
23D1 4.159 3.796 3.796 3.881 3.555 3.280 3.150 3.091 3.064 3.051 3.046

Fig. 1. Variation of theoretical mass of n3S1 states of
bb̄ with logarithm of temperature

In the limit of high temperatures, the bound-state en-
ergies tend to collapse to the values 2mb or 2mc for the bb̄
and cc̄ systems respectively. This is in agreement with the
high temperature behaviour of the system noted earlier
i.e. the effetive coupling constants go to zero and the sys-
tems become deconfined in the large temperature limit.
The fact that our numerical results agree with theoreti-
cal analysis in the small and large T limits gives greater
credence to our results at intermediate values of T .

Let us now compare the above results with the results
obtained by selectively using the M = 2m approximation
[25]. The parameters which give a resonably good fit for
the bb̄ family are: mb = 4.764 GeV, αs = 7.8× 10−2, λ =
9.9× 10−5 GeV2, C = −1.684 GeV3 and T = 20.89 MeV.
With the same values of αs and λ, the fits for the cc̄ family
are obtained with mc = 1.565 GeV, C = −0.05 GeV3 and
T = 5.64 MeV. The most significant difference between
[25] and the present investigation is that, in the former,
temperature never plays the role of a dormant variable.
Also, they lead to different deconfinement temperatures.
There is thus a need to put the two approaches to more
stringent tests. We are currently looking into this aspect.

Before we conclude, it is pertinent to ask: If the forma-
tion of the mesons take place in the medium comprising
the quark-gluon plasma, as we have assumed in this in-
vestigation, would not Debye screening of the quark color
charge suppress their production? Matsui and Satz [23]
have argued that the production of J/Psi should be pro-
hibited when the screening radius is smaller than the ra-
dius of the bound state, and that this should happen when
the temperature of the plasma is considerably in excess
of 200 MeV (which is taken by them to be the decon-
finement temperature). In this connection, however, one
must also note the findings of Bhatt et al. [24], which are:
(a) If a test source is at rest in the plasma, the screening
does not depend upon the color dynamics; and (b) For a
test source moving with non-relativistic velocity, the non-
abelian features manifest themselves by actually weaken-
ing the screening. In any case, Tu – the temperature in our
study which marks the threshold above which the mesons
have unstable masses – is well below 200 MeV.
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Fig. 2. Variation of theoretical mass of n3S1 states
of cc̄ with logarithm of temperature
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